A SOM Based Cluster Visualization and Its Application for False Coloring
نویسنده
چکیده
The self-organizing map (SOM) is widely used as a data visualization method in various engineering applications. It performs a non-linear mapping from a high-dimensional data space to a lower dimensional visualization space. In this paper, a simple method for visualizing the cluster structure of SOM model vectors is presented. The method may be used to produce tree-like visualizations, but the main application here is to get di erent color codings that express the approximate cluster structure of the SOM model vectors. This coloring may be exploited in making false color (pseudo color) presentations of the original data. The method is especially meant for making an easily implementable, explorative cluster visualization tool.
منابع مشابه
Application of a Self-Organizing Map for Clustering the Groundwater Quality in Kerman Province and Assessment its Suitability for Drinking and Irrigation Purposes
Evaluation of groundwater hydro chemical characteristics is necessary for planning and water resources management in terms of quality. In the present study, a self-organizing map (SOM) clustering technique was used to recognize the homogeneous clusters of hydro chemical parameters in water resources (including well, spring and qanat) of Kerman province; then, the quality classification of groun...
متن کاملA new approach for data visualization problem
Data visualization is the process of transforming data, information, and knowledge into visual form, making use of humans’ natural visual capabilities which reveals relationships in data sets that are not evident from the raw data, by using mathematical techniques to reduce the number of dimensions in the data set while preserving the relevant inherent properties. In this paper, we formulated d...
متن کاملColoring of the Self - Organising Maps based on class labels
The Self-Organizing Map (SOM) is a useful and strong tool for data analysis, especially for large data sets or data sets of high dimensionality. SOM visualizations map the data model dimensions to visual dimensions like color and position, thus they help exploring the SOM. Visualization can also involve the data itself so that it helps accessing information that are not available in the trained...
متن کاملAbstract—self-organizing Map (som) Is a Well Known Data
reduction technique used in data mining. It can reveal structure in data sets through data visualization that is otherwise hard to detect from raw data alone. However, interpretation through visual inspection is prone to errors and can be very tedious. There are several techniques for the automatic detection of clusters of code vectors found by SOM, but they generally do not take into account t...
متن کاملOn the Use of Self-Organizing Maps for Clustering and Visualization
We show that the number of output units used in a self-organizing map (SOM) influences its applicability for either clustering or visualization. By reviewing the appropriate literature and theory and own empirical results, we demonstrate that SOMs can be used for clustering or visualization separately, for simultaneous clustering and visualization, and even for clustering via visualization. For...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2000